
Starid

Noah Smith

Dec 28, 2022

CONTENTS:

1 starid python 3

2 libstarid cpp 5

3 install 7

4 higher-level 9
4.1 starid.py . 9
4.2 api.cpp . 9

5 sky model 11
5.1 skymap.cpp . 11
5.2 sky.cpp . 11
5.3 starpairs.cpp . 12

6 identification 13
6.1 startriangleidentifier.cpp . 13
6.2 startriangle.cpp . 14
6.3 startriangleside.cpp . 14

Python Module Index 17

Index 19

i

ii

Starid

code is split into two folders, with the starid folder playing a special role as a python package for release on the pypi
package repo.

CONTENTS: 1

Starid

2 CONTENTS:

CHAPTER

ONE

STARID PYTHON

ideally, a lot can be done in python without knowing much about the underlying cpp - there’s a model of the sky, a
toolbox for working with it, and it’s available via starid.py.

3

Starid

4 Chapter 1. starid python

CHAPTER

TWO

LIBSTARID CPP

fast inner loops for working with star triangles. also useful for working with lots of three-dimensional star pointing
vectors, though this is probably reasonable in python as well. in any case, hardware acceleration of vectorized compu-
tations, matrix and vector math via eigen. when computations become heavier, move them from python into cpp.

5

Starid

6 Chapter 2. libstarid cpp

CHAPTER

THREE

INSTALL

have switched to a container build environment - reproducible using the dockerfile. everything needed is there and can
be reproduced for a local environment. docker image is available on docker hub.

7

Starid

8 Chapter 3. install

CHAPTER

FOUR

HIGHER-LEVEL

python starid object making all of the lower-level stuff available - it’s the interface between python and the underlying
cpp. the starid object could in some sense be a singleton - there should be only one. on the other hand, it’s possible
to imagine paths where this is no longer true. . . imagine using two sets of stars from the star catalog - one including
fainter stars. in short, two skies. we could have two starid objects at the same time, one for each sky.

4.1 starid.py

4.2 api.cpp

class libstarid_.api.Api

handles calls from python code, for example starid.py. where reading and writing of data files is done, the
headers-only cereal library is used. this is the cpp version of the python pickle library. binary objects are moved
directly to and from disk. binary data is more efficient - it’s smaller and faster.

NOMAD(image_pixels)
performs identification and outputs an id - if that matches the starndx used by image_generator to create
the image, identification was a success.

SETTLER(image_pixels)
performs identification and outputs an id - if that matches the starndx used by image_generator to create
the image, identification was a success.

image_generator(starndx)
for the star indicated by starndx, generate a standard lo-fi image, with the sky randomly rotated. this is
an image for which we want to perform star identification. it’s the input to the image_identifier method,
which performs identification and outputs the resulting id - if that matches the starndx, identification was a
success.

read_sky()

start a sky object from a sky data file using cereal. the key part of sky data is a three-dimensional pointing
vector representing the direction to each star in the celestial reference frame.

read_starpairs()

start a starpair object from a starpair data file using cereal. this object is the key ingredient for star triangles
- a star pair is a triangle-side in star triangles, it’s the ‘fundamental particle’ of a triangle view of the sky.
every triangle is made of three starpairs. in a starpair object, for each star, the starpairs with each of its near
neighbors are represented, pre-computed and ready for use. computing this object is relatively heavy and
we want to do it once, in advance, and then reuse it from there.

9

Starid

write_sky()

generate a sky object and write a sky data file using cereal. generating a sky object from scratch can take a
noticeable amount of time - a few seconds?

write_starpairs()

generate star pairs for a given set of stars and write a starpair data file using cereal. this scales up quickly
with star density on the sky - so with the brightness threshold we’re using. including fainter stars increases
the density exponentially, along with the computational cost of generating star pairs. for each star, we only
care about its neighbors that can appear in the images we’re using. bigger images mean more neighbors
to generate star pairs for. our current baseline is visual magnitude 6.5 - the roughly eight thousand stars
visible to the human eye - and an image size of eight by eight degrees, typical for a certain generation of
star trackers.

10 Chapter 4. higher-level

CHAPTER

FIVE

SKY MODEL

interactive model of the sky, based on a set of stars from the nasa skymap star catalog. the stars are defined by a
brightness cutoff - all stars brighter than the cutoff. with a cutoff of visual magnitude 6.5, this means slightly more than
all stars visible to human eyes - 8876 in total.

5.1 skymap.cpp

class libstarid_.skymap.Skymap

bring the nasa skymap sky2000 v5r4 star catalog in. there are peculiarities to this catalog, and they should be
reflected in its representation here. briefly, v5r4 was targeted at real world star tracker users - it tried to fuse
results from multiple predecessor catalogs to provide useful information.

5.2 sky.cpp

class libstarid_.sky.Sky

model the sky, based on the skymap object. the key input parameter is the star brightness threshold - with visual
magnitude 6.5 the sky is about nine thousand stars, and that number grows exponentially as dimmer stars are
included.

image_generator(starndx)
creates a standard image for the target star, ready for feeding into a star identifier. the format is 28 x 28
pixels - lo-fi, the way we like it. makes thing tougher on us. and also by no coincidence matching the classic
mnist character recognition data set. the story behind that is a long one, discussed elsewhere in the project.

stars_in_ring(p, radius, table)
when we break the skies three-dimensional search space down into three one-dimensional search spaces,
the one-dimensional spaces represent rings on the sky. we have three rings, and the stars we’re interested
in are in their intersection. this intersection of three rings is in some sense a three-dimensional hash map
into the sky.

stars_near_point(x, y, z)
given a three-dimensional pointing vector in the celestial reference frame, return the identifiers for nearby
stars. this is fundamental - we have to be able to call up the stars near a target on the sky. it’s a rich problem
we’ll be discussing throughout the project documentation. here we break the three-dimensional search
space down into three one-dimensional search spaces, and create a map or hash-index into each of those.
in a sense - it’s a three-dimensional hash map into the sky.

11

Starid

start(pathin)
initialize the sky. first generates a skymap object and then picks out the information needed here, with some
enrichment - in particular with three-dimensional vectors in the celestial reference frame.

5.3 starpairs.cpp

class libstarid_.starpairs.Starpairs

foundation for star triangles - a star pair is a triangle-side - it’s the fundamental particle of a triangle view of the
sky. every triangle is made of three starpairs. in a starpair object, for each star, the starpairs with each of its
near neighbors are represented, pre-computed and ready for use. computing this object is relatively heavy and
we want to do it once, in advance, and then reuse it from there. so cerealize it to a starpairs file and read in the
starpairs object from that whenever possible, rather than generating from scratch.

generate(sky)
create a starpairs object from scratch. this can written to disk using cereal, and read from there in the future
to bypass these computations.

pair_labeler(catndx1, catndx2)
returns a unique string for the pair, consisting of the catalog ids for the member stars - a useful identifier
for the pair.

pairs_for_angle(angle, tol_radius)
for an angle, what are the candidate star pairs? creates the representation of stars used in star triangles.
there, a star is a collection of associations with its near neighbors - its essential feature is its membership
in pairs and triangle sides. what we do here is look at each star in turn, asking the question - what pairings
do we care about for the star triangle representation of the sky we’re going to use? the tuning parameters
representing the answer to that question are the angle between pair members and a measure of tolerance or
sensitivity.

12 Chapter 5. sky model

CHAPTER

SIX

IDENTIFICATION

view the sky as triangles of stars. for the target star, it’s a member of a set of triangles - eliminate candidate ids based
on the geometry of these triangles. this is an iterative process and the inner loop is comparing triangle geometries. the
overall speed depends on this inner loop, so the focus is on making it as efficient as possible.

identifies the target of a star image, using the triangles formed by neighboring stars within the image. the fundemental
particles are actually pairs of stars - in a sense individual stars don’t exist here, what exists are pairs of stars, acting as
sides of triangles - so a key object handed to the identifier in its constructor is a starpairs object, containing all of the
relevant pairs. when possible, the starpairs object was loaded from a cerealized starpairs file, rather than generated at
run-time.

6.1 startriangleidentifier.cpp

class libstarid_.startriangleidentifier.NOMAD

star recognition focused on a chain of triangles and basesides - side2 of each triangle is the baseside of the
following triangle. during feedback, these shared side2 -> baseside pairs are the path for information to flow
backwards - increasing the constraints on the initial triangle baseside and basestar. the name NOMAD relates to
how the chain of triangles wanders away from the target star and initial triangle.

run(pixels)
recognize target star from the image pixels.

class libstarid_.startriangleidentifier.SETTLER

the target star ia always star a. star b is a neighbor star, and an abside is a star pair and triangle side with the target
as the first member of the pair. in the inner loops, additional stars c and d are involved. first an abca triangle is
formed. this constrains the abside. then for an abca triangle, a sequence of abda triangles are formed, further
constraining the abside. when we reach an abda that eliminates all but one star pair possibility for the abside,
we’ve recognized the target star. the name SETTLER comes from the idea that we never move away the target
star, we’re settling around it.

get_angs_c()

examine a candidate for star c before using it to form triangle abca. we want the angles between stars a, b,
and c to be appreciable. the angles remain in angs_c for later use.

get_angs_d()

examine a candidate for star d before using it to form triangle abda. we want the angles from stars a, b, and
c to be appreciable. the angles remain in angs_d for later use

run(pixels)
recognize target star from the image pixels.

13

Starid

6.2 startriangle.cpp

class libstarid_.startriangle.StartriangleNOMAD

NOMAD triangle. focus is on the basestar and baseside - nomad is about a chain of basesides, each increasing
the constraints on the preceding basestars. first constructor here is for the initial triangle and has the target star
as basestar. second constructor is for following triangles. each takes side2 from its predecessor and uses that as
its baseside. the chain of triangles is a train of baseides - side2 of each triangle is the baseside of the following
triangle. during feedback, these shared side2 -> baseside pairs are the path for information to flow backwards,
all the way backward from latest triangle to the initial triangle - increasing the constraints on the initial triangle
baseside and basestar.

constrain()

in each of the three sides, there’s a pairhalf1 -> pairhalf -> 0 or 1 concept. 0 is the default and means drop
this pair. here we will mark pairs to keep by setting them to 1, all others will be dropped.

feedback()

increase the constraints on the baseside in the prev triangle, using the baseside of the following triangle in
the chain. as triangles are added, constraints flow backwards through preceding basesides and basestars.
the chain of triangles is a train of baseides - side2 of each triangle is the baseside of the following triangle.
during feedback, these shared side2 -> baseside pairs are the path for information to flow backwards, all the
way backward from latest triangle to the initial triangle - increasing the constraints on the initial triangle
baseside and basestar.

stop()

stopping condition. true if basestars and basesides have been constrained to the point where only one
possible basestar remains.

class libstarid_.startriangle.StartriangleSETTLER

SETTLER triangle. acts as the triangles abca and abda within the star triangle identifier inner loops. their are
three triangle sides - representing three star pairs, each with an angular separation. each side is acted by a star
triangle side object. star recognition focused on triangles that contain the target star - star a is always the target
star, star b is a neighbor star, and an abside is a star pair and triangle side with the target as the first member of
the pair. in the inner loops, additional stars c and d are involved. first an abca triangle is formed. this constrains
the abside. then for an abca triangle, a sequence of abda triangles are formed, further constraining the abside.
when we reach an abda that eliminates all but one star pair possibility for the abside, we’ve recognized the target
star. until that happens, we continue picking new absides, with new abca triangles, with new abda triangles. the
name SETTLER comes from the idea that we never move away the target star, we’re settling around it.

constrain_abca()

test candidate star pairs for the sides of an abca triangle.

constrain_abda(triangles)
test candidate star pairs for the sides of an abda triangle.

6.3 startriangleside.cpp

class libstarid_.startriangleside.Startriangleside

act as one of the three triangle sides within a parent star triangle object. here stars is a representation of candidate
star pairs that could belong to the side. ultimately - when we’ve recognized the target star, all but one candidate
star pair is eliminated.

14 Chapter 6. identification

Starid

countpairs()

how many candidate star pairs remain in this side.

drops()

there’s a pairhalf1 -> pairhalf -> 0 or 1 concept. 0 is the default and means drop this particular pair. here
we drop all pairs that have not been set to 1, and reset all that remain to 0.

update(side)
used just for the abside currently being investigated, to update it based on the latest abca or abda triangle.

6.3. startriangleside.cpp 15

Starid

16 Chapter 6. identification

PYTHON MODULE INDEX

l
libstarid_.api, 9
libstarid_.sky, 11
libstarid_.skymap, 11
libstarid_.starpairs, 12
libstarid_.startriangle, 14
libstarid_.startriangleidentifier, 13
libstarid_.startriangleside, 14

17

Starid

18 Python Module Index

INDEX

A
Api (class in libstarid_.api), 9

C
constrain() (libstarid_.startriangle.StartriangleNOMAD

method), 14
constrain_abca() (lib-

starid_.startriangle.StartriangleSETTLER
method), 14

constrain_abda() (lib-
starid_.startriangle.StartriangleSETTLER
method), 14

countpairs() (libstarid_.startriangleside.Startriangleside
method), 14

D
drops() (libstarid_.startriangleside.Startriangleside

method), 15

F
feedback() (libstarid_.startriangle.StartriangleNOMAD

method), 14

G
generate() (libstarid_.starpairs.Starpairs method), 12
get_angs_c() (libstarid_.startriangleidentifier.SETTLER

method), 13
get_angs_d() (libstarid_.startriangleidentifier.SETTLER

method), 13

I
image_generator() (libstarid_.api.Api method), 9
image_generator() (libstarid_.sky.Sky method), 11

L
libstarid_.api

module, 9
libstarid_.sky

module, 11
libstarid_.skymap

module, 11

libstarid_.starpairs
module, 12

libstarid_.startriangle
module, 14

libstarid_.startriangleidentifier
module, 13

libstarid_.startriangleside
module, 14

M
module

libstarid_.api, 9
libstarid_.sky, 11
libstarid_.skymap, 11
libstarid_.starpairs, 12
libstarid_.startriangle, 14
libstarid_.startriangleidentifier, 13
libstarid_.startriangleside, 14

N
NOMAD (class in libstarid_.startriangleidentifier), 13
NOMAD() (libstarid_.api.Api method), 9

P
pair_labeler() (libstarid_.starpairs.Starpairs

method), 12
pairs_for_angle() (libstarid_.starpairs.Starpairs

method), 12

R
read_sky() (libstarid_.api.Api method), 9
read_starpairs() (libstarid_.api.Api method), 9
run() (libstarid_.startriangleidentifier.NOMAD method),

13
run() (libstarid_.startriangleidentifier.SETTLER

method), 13

S
SETTLER (class in libstarid_.startriangleidentifier), 13
SETTLER() (libstarid_.api.Api method), 9
Sky (class in libstarid_.sky), 11
Skymap (class in libstarid_.skymap), 11

19

Starid

Starpairs (class in libstarid_.starpairs), 12
stars_in_ring() (libstarid_.sky.Sky method), 11
stars_near_point() (libstarid_.sky.Sky method), 11
start() (libstarid_.sky.Sky method), 11
StartriangleNOMAD (class in libstarid_.startriangle),

14
StartriangleSETTLER (class in libstarid_.startriangle),

14
Startriangleside (class in lib-

starid_.startriangleside), 14
stop() (libstarid_.startriangle.StartriangleNOMAD

method), 14

U
update() (libstarid_.startriangleside.Startriangleside

method), 15

W
write_sky() (libstarid_.api.Api method), 9
write_starpairs() (libstarid_.api.Api method), 10

20 Index

	starid python
	libstarid cpp
	install
	higher-level
	starid.py
	api.cpp

	sky model
	skymap.cpp
	sky.cpp
	starpairs.cpp

	identification
	startriangleidentifier.cpp
	startriangle.cpp
	startriangleside.cpp

	Python Module Index
	Index

